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= |n the following, consider only triangle meshes

= Naive rendering:

= N triangles— 3N vertices have to be sent to the
graphics card ’

" Implementation in OpenGL:

glBegin( GL TRIANGLES ) ;
for ( unsigned int i = 0;
i< n tris; i++ )

{ . .
glvertex3fv( tri[i] [0] ), ngg
glVertex3fv( tri[i][1] )
glVertex3fv( tri[il[2] ); b v \/J

glEnd() ; -<II>-
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= Graphics cards offer a special
primitive: the triangle strip
" The idea:

= The graphics card always "remembers"
the 2 vertices which it received last

= With each transmission of a new vertex,
the graphics card forms a new triangle
out of the new and the 2 "old" vertices

= Example:

= 9 vertices — 7 triangles

= Advantage: factor 3 less vertex data
need to be transmitted and Transmitted vertices:

processed! Vo Vi V2 V3 V4 Vs Vg V7 Vg
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= Implementation in OpenGL:

glBegin( GL TRIANGLE STRIP ) ;

glVertex3fv( strip.v[j] )
glEnd() ;

for ( unsigned int j = 0; j < strip.n verts; Jj ++ )
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Example of a "Striped" Object
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905 stripes

4320 polygons
12960 vertices

6127 vertices
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Some Concepts

= Definition:
A triangle strip is a sequence of triangles in a

mesh, so that two triangles following each other
have a common edge.

= What about the orientation of the triangles?
= What can be done in such cases?
= Solution:

= V> has to be transmitted twice

= V, is called a swap-vertex —
it creates a degenerated triangle

Vo Vi V3©V5 V, V; Vg Vg
SS

G. Zachmann Advanced Computer Graphics June 2013

4
L
2

Striping

7 cG
VR



eeeeee

U A Geometric "Denksport-Aufgabe"

= Take an octahedron; determine the midpoints of its facets;
connect the midpoints of adjacent facets — which polyhedron
emerges?

= Take an octahedron; determine the midpoints of its edges;
connect the midpoints of adjacent edges — which polyhedron
emerges?

= Take a cube; connect the midpoints of adjacent facets — which
polyhedron do you get?
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W  An NP-Complete Problem

= Questions:
1. Is it possible to create a single strip out of each mesh?

2. How can one (or more) strip(s) be created efficiently?

= Reduction of the problem: C

= Utilize the dual graph

= Definition of the dual graph:
Given a mesh / planar graph G = (V, E, F).
The dual graph G'=(V', E', F') is derived
from G as follows: replace each facet of F by a node in V' and
connect two nodes in V' by an edge, iff their original facets share a

common edge (i.e., are adjacent).
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= Proposition:
The problem "decide for any triangle mesh M, whether it is possible
to turn it into a single tri-strip" is NP-completel!

= Proof, part 1:

= To show: the verification of a "candidate" is in the class P

Let G' be the dual graph of the original mesh M

We have: |E'| € O(|V'|) = O(|A)

For E' create an adjacency matrix (using a hash table, this costs O( |E'| )

Let a candidate strip be (v'j;, V'jy, V'i3, ..., Vi,
- Each v';, of G' corresponds to a triangle in M

= Check each pair (v'j, v'j, ;) of the candidate, whether it is contained in E'
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Proof, part 2: reduction from a known NP-complete problem

= The reduction from the know NP-complete onto our problem must be € P

Definition Hamilton path :

Given a graph G. A Hamilton path is a path through G, so that each
vertex is visited exactly once.

Example :

Observations :

= A mesh/graph G
has a single triangle strip iff
the dual graph G' has a Hamilton path

= |n case all facets within the (closed) mesh G are triangles, then all nodes
in G' have degree 3 (= number of incident edges)
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= Theorem from graph theory:

The problem to decide, whether a given graph possesses a
Hamilton path, is NP-complete.

This is even the case, if all nodes within the graph have degree 3!

= Conclusion: "only" try to create as few strips as possible
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= Stripification = stripping of a mesh into triangle strips

= Optimization task: only as few strips as possible, and overall as few
"double" vertices / swap-vertices as possible

= Definitions:
Free triangle := triangle that does not yet belong to a strip
Degree of a triangle := number of free neighbor triangles
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= The SGI-Algorithm [Akeley, 1990]:
= Use a greedy strategy

= The local criterion: go to the neighboring triangle
with the smallest degree

= Do look-ahead for tie-breaking

while ex. still free triangles:

start new strip with this triangle

choose the neighbor with the lowest degree
if tie:
look one step ahead

add triangle to current strip

choose triangle with smallest degree 0

while last triangle in current strip has free neighbors:
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= The "Fast Triangle Strip Generator" (FTSG) [Xiang et al., 1999]:

= One of the best algorithms (in the sense of rendering performance and
the time of construction)

= Overview of the algorithm:

1. Create a spanning tree T in the dual graph of the tri-mesh

2. Partition T into as few paths as possible

3. Possibly do post-processing: try to unite short strips

= Definition: spanning tree
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= Regarding step 2 (partitioning the spanning tree T):

= Select a node v within T with degree 3
(has two children) and a level as deep as possible

= The sub-tree with root v consists of
a single path from the left to the right side;
store this strip; delete the path from T

= Repeat, until no node with degree 3
remains

= Running time: O(n)
(with the suitable data structures)
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= Regarding step 1 (construction of the spanning tree T):
= Aim: try to construct a spanning tree with a minimal number of nodes
that have degree 3 or higher = 2+ children
- This is a consequence from step 2
= Typical procedures for the construction of the spanning tree:
- Breadth-first search (BFS) through the original graph
- Depth-first search (DFS

= Practice
shows: BFS DFS Hybrid
DFS yields -

the best
results in
this case
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= Additional heuristics (since we need the spanning tree for special
purposes):

= Observation: during DFS through the graph, we have very often a free
choice which neighboring node shall be visited next

»Heuristic here: choose the
neighboring triangle (= neighboring
node in spanning tree T) such
that the current triangle and

this neighboring triangle would
not produce a swap vertex, if they
were in a common triangle strip
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= Regarding step 3 (post-processing = concatenation of short strips):

= The setup of strips (on the graphics card) costs more time than to send a

vertex

= Consequence: concatenate several short strips, even if that requires to

insert a swap-vertex

= Cases:

Good case

And 2 more cases ... (reduction by 1 vertex)
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= Result: on average, ca. 1.23 vertices per triangle are sent during
rendering

= Data structure: DCEL is a suitable candidate

= Observation: The performance depends very heavily on the DS!

= With pre-implemented, generic DS (e.g., from a library) one is finished
with the job quickly, but the performance is mediocre

= With specially adapted, "hand-made" DS, the performance
(hopefully!) is very good, but the implementation takes much longer
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= A special data structure for stripification:

= Utilize the fact that we only work with triangle meshes

= Store all three incident edges directly with the triangles

class Triangle

{

HalfEdge halfEdges[3]; // faster access

uint degree;

// 0, ..., 3

Triangle *nextInList, // for d-list

*prevInlList;

Triangle *child[2];

// for spanning tree

- This minimizes "pointer chasing", makes better use of CPU cache

= This is a mix of face-based and edge-based data structures
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W Caveats

= Today's graphics cards are so complex and possess so many
further features, that it is not clear, whether / how much striping
gains us rendering performance!

= Some GPUs have an integrated index cache (helpful when rendering
indexed face sets), so that the pipeline first checks whether a new
vertex index is in the cache; if so, then the transformed vertex is
retrieved directly from the cache

= |n the case where expensive vertex shaders are used, striping
surely gains performance

= On mobile graphics chips, striping gains performance for
"normal" rendering (as of 2012)

= Because they have no caches, and much less features

= But the opinions are mixed ...
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