
Advanced Computer Graphics
Striping / Stripping

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Striping Advanced Computer Graphics 26 June 2013 SS

Motivation

§  In the following, consider only triangle meshes

§  Naïve rendering:

§  N triangles→ 3N vertices have to be sent to the
graphics card

§  Implementation in OpenGL:

glBegin(GL_TRIANGLES);
for (unsigned int i = 0;
 i < n_tris; i++)
{
 glVertex3fv(tri[i][0]);
 glVertex3fv(tri[i][1]);
 glVertex3fv(tri[i][2]);
}
glEnd();

G. Zachmann 3 Striping Advanced Computer Graphics 26 June 2013 SS

Solution

§  Graphics cards offer a special
primitive: the triangle strip

§  The idea:

§  The graphics card always "remembers"
the 2 vertices which it received last

§ With each transmission of a new vertex,
the graphics card forms a new triangle
out of the new and the 2 "old" vertices

§  Example:

§  9 vertices → 7 triangles

§  Advantage: factor 3 less vertex data
need to be transmitted and
processed!

Transmitted vertices:
v0 v1 v2 v3 v4 v5 v6 v7 v8

v0

v1 v2

v3

v4

v5

v6

v8

v7

G. Zachmann 4 Striping Advanced Computer Graphics 26 June 2013 SS

§  Implementation in OpenGL:

glBegin(GL_TRIANGLE_STRIP);

for (unsigned int j = 0; j < strip.n_verts; j ++)

 glVertex3fv(strip.v[j]);

glEnd();

G. Zachmann 5 Striping Advanced Computer Graphics 26 June 2013 SS

Example of a "Striped" Object

4320 polygons
12960 vertices

905 stripes
6127 vertices

G. Zachmann 6 Striping Advanced Computer Graphics 26 June 2013 SS

Some Concepts

§  Definition:
A triangle strip is a sequence of triangles in a
mesh, so that two triangles following each other
have a common edge.

§  What about the orientation of the triangles?

§  What can be done in such cases?

§  Solution:

§  V2 has to be transmitted twice

§  V2 is called a swap-vertex –
it creates a degenerated triangle

v2

v1

v3
v4

v5
v6

v7 v8

v0

v2

v1

v3
v4

v5
v6

v7 v8

v0

v0 v1 v2 v3 v2 v5 v4 v7 v6 v8

v2

G. Zachmann 7 Striping Advanced Computer Graphics 26 June 2013 SS

A Geometric "Denksport-Aufgabe"

§  Take an octahedron; determine the midpoints of its facets;
connect the midpoints of adjacent facets ⟶ which polyhedron
emerges?

§  Take an octahedron; determine the midpoints of its edges;
connect the midpoints of adjacent edges ⟶ which polyhedron
emerges?

§  Take a cube; connect the midpoints of adjacent facets ⟶ which
polyhedron do you get?

Fertige zuerst zu den Aufgaben Handskizzen an und
führe dann die Aufgabe mit einem CAD-Paket
durch.
Verwende dabei die Dateien OKTAEDER und TETRA.

1) In einem Oktaeder sind die Mittelpunkte benachbarter Seitenflächen miteinander zu verbinden.
Welches Polyeder entsteht dabei?

2) Verbindet man die Mittelpunkte benachbarter Seitenkanten eines Oktaeders, so erhält man die
Kanten eines Kuboktaeders.

3) Verbindet man benachbarte Eckpunkte
eines Tetraeders, so erhält man ein
Polyeder mit Ecken und
....... Kanten.
Das Polyeder nennt man

G. Zachmann 8 Striping Advanced Computer Graphics 26 June 2013 SS

An NP-Complete Problem

§  Questions:

1.  Is it possible to create a single strip out of each mesh?

2.  How can one (or more) strip(s) be created efficiently?

§  Reduction of the problem:

§  Utilize the dual graph

§  Definition of the dual graph:
Given a mesh / planar graph G = (V, E, F).
The dual graph G' = (V', E', F') is derived
from G as follows: replace each facet of F by a node in V' and
connect two nodes in V' by an edge, iff their original facets share a
common edge (i.e., are adjacent).

G

G'

G. Zachmann 9 Striping Advanced Computer Graphics 26 June 2013 SS

§  Proposition:
The problem "decide for any triangle mesh M, whether it is possible
to turn it into a single tri-strip" is NP-complete!

§  Proof, part 1:

§  To show: the verification of a "candidate" is in the class P

§  Let G' be the dual graph of the original mesh M

§ We have: |E'| ∈ O(|V'|) = O(|F|)

§  For E' create an adjacency matrix (using a hash table, this costs O(|E'|)

§  Let a candidate strip be (v'i1, v'i2, v'i3, …, v'in)

-  Each v'ik of G' corresponds to a triangle in M

§  Check each pair (v'ik, v'ik+1) of the candidate, whether it is contained in E'

G. Zachmann 10 Striping Advanced Computer Graphics 26 June 2013 SS

§  Proof, part 2: reduction from a known NP-complete problem

§  The reduction from the know NP-complete onto our problem must be ∈ P

§  Definition Hamilton path :
Given a graph G. A Hamilton path is a path through G, so that each
vertex is visited exactly once.

§  Example :

§  Observations :
§  A mesh/graph G

has a single triangle strip iff
the dual graph G' has a Hamilton path

§  In case all facets within the (closed) mesh G are triangles, then all nodes
in G' have degree 3 (= number of incident edges)

G. Zachmann 11 Striping Advanced Computer Graphics 26 June 2013 SS

§  Theorem from graph theory:
The problem to decide, whether a given graph possesses a
Hamilton path, is NP-complete.
This is even the case, if all nodes within the graph have degree 3!

§  Conclusion: "only" try to create as few strips as possible

G. Zachmann 12 Striping Advanced Computer Graphics 26 June 2013 SS

Tasks

§  Stripification = stripping of a mesh into triangle strips

§  Optimization task: only as few strips as possible, and overall as few
"double" vertices / swap-vertices as possible

§  Definitions:
Free triangle := triangle that does not yet belong to a strip
Degree of a triangle := number of free neighbor triangles

G. Zachmann 13 Striping Advanced Computer Graphics 26 June 2013 SS

while ex. still free triangles:

 choose triangle with smallest degree

 start new strip with this triangle

 while last triangle in current strip has free neighbors:

 choose the neighbor with the lowest degree

 if tie:

 look one step ahead

 add triangle to current strip

§  The SGI-Algorithm [Akeley, 1990]:

§  Use a greedy strategy

§  The local criterion: go to the neighboring triangle
with the smallest degree

§  Do look-ahead for tie-breaking

3.1 Direct methods

As mentioned above, the direct methods use directly the information from triangle or
polygonal mesh, to produce triangle strips. Nearly all methods use the criterion of number
of neighbors (local criterion) to decide whether to connect a triangle to a strip or not.

3.1.1 SGI method

Akeley et al. [2] have developed one of the first stripification algorithms, known as SGI
or tomesh that converts a fully triangulated mesh into triangle strips. It is a simple greedy
algorithm which uses a local criterion.

This algorithm (Figure 3.1) tries to build triangle strips which do not divide the remain-
ing triangulation into too many small pieces. The strip is starting with the triangle with
the least number of neighbors. Then a greedy heuristic is used to add adjacent triangles
with the least number of neighbors to a strip. If more triangles with the same number of
neighbors exist, the algorithm looks one step ahead. If there is no neighboring triangle, a
new strip is created. The algorithm stops after all triangles were added to strips.

while there is any triangle in the mesh do

start a new strip

choose a triangle with the least number of neighbors

add the triangle to the current strip

remove the triangle from the mesh

update the number of neighbors

while there exists a neighbor do

choose a neighbor with the least number of neighbors

if there is an equality then

look one step ahead

add the triangle to the current strip

remove the triangle from the mesh

update the number of neighbors

end while

end while

Figure 3.1: Pseudo-code of the basic SGI algorithm and an example of strip construction.

The time complexity of this algorithm isO(n+s.n), where n is the number of triangles
and s is the number of triangle strips. To reduce the complexity to O(n), it is necessary to
use some additional data structures (a hash table, or a priority queue) to be able to find the
starting triangle quickly.

10

G. Zachmann 14 Striping Advanced Computer Graphics 26 June 2013 SS

§  The "Fast Triangle Strip Generator" (FTSG) [Xiang et al., 1999]:

§ One of the best algorithms (in the sense of rendering performance and
the time of construction)

§  Overview of the algorithm:

1.  Create a spanning tree T in the dual graph of the tri-mesh

2.  Partition T into as few paths as possible

3.  Possibly do post-processing: try to unite short strips

§  Definition: spanning tree

G. Zachmann 15 Striping Advanced Computer Graphics 26 June 2013 SS

§  Regarding step 2 (partitioning the spanning tree T):

§  Select a node v within T with degree 3
(has two children) and a level as deep as possible

§  The sub-tree with root v consists of
a single path from the left to the right side;
store this strip; delete the path from T

§  Repeat, until no node with degree 3
remains

§  Running time: O(n)
(with the suitable data structures)

Proof. We let be any spanning tree (e.g., a depth-first search tree,
which is computable in linear time) for the dual graph of . We
then apply the “Path Peeling Algorithm” of Lemma 4 to decompose
into paths each of length 3 or more (except, possibly, for one

path). Now consider one such path , and let be the number of
its triangles. Obviously, the costs are 3, 4, and 5 for paths of length

and 3. By Lemma 3 we get a cost of for
. Summing over all the paths yields the claim. (Note that one

path may be of length , requiring vertices.)
A similar analysis can be applied to the case in which we allow

both sequential and fan tristrips, or in which we allow zero-area
triangles in the sequential strips.

Corollary 6

Proof. The upper bounds come directly from the theorem above.
The lower bounds come from a family of examples, one of which
is shown in Fig. 3. The dual tree for the triangulation can be par-
titioned into paths each having four nodes, as shown in the
middle figure; this is the result produced by our Path Peeling Al-
gorithm. One can argue that the optimal partitioning, however, is
obtained by breaking the tree into pairs of paths consisting of a 5-
node path and a singleton, as shown on the right.

The above corollary says that the worst-case number of vertices
per triangle is between 5/3 and 2 for pure sequential strips, between
5/3 and 7/4 for sequential strips allowing zero-area triangles, and
at most 1.8 for mixed strips. In Section 6, we see that, in practice,
our heuristics do better than these worst-case bounds, with our best
method averaging about 1.21 vertices per triangle (allowing zero-
area triangles in sequential strips).

1

2

3
456

12

11

10
987

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: Lower-bound example for the Corollary.

4 Stripification Algorithm
Our stripification algorithm consists of five steps:

(1) computing a triangulation of faces of the model that are not
already triangles;

(2) constructing a spanning tree, , in the dual graph of the tri-
angulation;

(3) partitioning into a set of paths, corresponding to Hamiltonian
triangulations;

(4) greedily decomposing the corresponding Hamiltonian strips
into sequential or fan tristrips; and

(5) concatenating short tristrips into longer tristrips, using a set of
postprocessing heuristics applied to the result of Step (4); see
Section 5.

For (1), we have integrated and enhanced the FIST [10] sys-
tem, which robustly triangulates polygonal models, even if highly
degenerate or corrupted. Our modification of FIST enables us to
output triangulations of convex faces that are pure tri-strips, or to
leave convex faces untriangulated (and triangulate only all concave
faces).
For Step (2), we have implemented standard depth-first search

(DFS) and breadth-first search (BFS), and we have also devised a
hybrid variant that does DFS, but returns to the highest level node
not yet fully explored.
For (3), we apply our “bottom up” Path Peeling Algorithm, from

Lemma 4 of the last section. This guarantees that each path (Hamil-
tonian strip), except possibly for one, will have at least three tri-
angles. We also devised an optimal algorithm, based on dynamic
programming, to partition into a minimum number of sequential
tristrips; see Section 5.
The overall goal in Step (2) is to build a spanning tree of

that has a small number of nodes of degree two, as this will result
in a small number of paths generated in Step (3) of the algorithm.
BFS tends to generate trees that resemble balanced binary trees.
Therefore, the number of nodes in a BFS-tree that have two chil-
dren may be large. DFS and the hybrid search both tend to gener-
ate more degree-one nodes than BFS, thus reducing the number of
paths generated in Step (3).

s

BFS

s

DFS

s

Hybrid

Figure 4: Three graph searching algorithms.

There is a choice of which triangle to visit next during the con-
struction of whenever the graph search has entered a triangle with
two unvisited neighbors. Obviously, one can simply perform ran-
dom marching and pick the next triangle randomly. One heuristic
for picking a “good” next triangle has been implemented by SGI in
tomesh: this heuristic picks the triangle with the least number of
unvisited neighbors. Using this heuristic in Fig. 4(b) will find one
single path that covers . Another heuristic is to keep track of the
side on which the current triangle has been entered from the previ-
ous triangle, and to choose the next triangle such that one alternates
the turn. This alternate-turn marching can be expected to help to
get longer and therefore fewer sequential strips.
We implement and test all three graph search algorithms, BFS,

DFS, and hybrid search. For each search algorithm, we generate
the following three types of strips:
(1) sequential strips only,
(2) fan strips only,
(3) both sequential and fan strips.

If both sequential and fan strips are generated, we favor sequential
strips. That is, a fan strip will start only if the greedy decomposi-
tion in Step (4) encounters four consecutive triangles that cannot be
encoded with a sequential strip.
Our algorithm runs in overall linear time in the worst case, after

triangulation (Step (1)). In practice, FIST has been shown to take
only linear time for Step (1), see [10], especially since most faces

G. Zachmann 16 Striping Advanced Computer Graphics 26 June 2013 SS

§  Regarding step 1 (construction of the spanning tree T):

§  Aim: try to construct a spanning tree with a minimal number of nodes
that have degree 3 or higher = 2+ children

-  This is a consequence from step 2

§  Typical procedures for the construction of the spanning tree:

-  Breadth-first search (BFS) through the original graph

-  Depth-first search (DFS

§  Practice
shows:
DFS yields
the best
results in
this case

Proof. We let be any spanning tree (e.g., a depth-first search tree,
which is computable in linear time) for the dual graph of . We
then apply the “Path Peeling Algorithm” of Lemma 4 to decompose
into paths each of length 3 or more (except, possibly, for one

path). Now consider one such path , and let be the number of
its triangles. Obviously, the costs are 3, 4, and 5 for paths of length

and 3. By Lemma 3 we get a cost of for
. Summing over all the paths yields the claim. (Note that one

path may be of length , requiring vertices.)
A similar analysis can be applied to the case in which we allow

both sequential and fan tristrips, or in which we allow zero-area
triangles in the sequential strips.

Corollary 6

Proof. The upper bounds come directly from the theorem above.
The lower bounds come from a family of examples, one of which
is shown in Fig. 3. The dual tree for the triangulation can be par-
titioned into paths each having four nodes, as shown in the
middle figure; this is the result produced by our Path Peeling Al-
gorithm. One can argue that the optimal partitioning, however, is
obtained by breaking the tree into pairs of paths consisting of a 5-
node path and a singleton, as shown on the right.

The above corollary says that the worst-case number of vertices
per triangle is between 5/3 and 2 for pure sequential strips, between
5/3 and 7/4 for sequential strips allowing zero-area triangles, and
at most 1.8 for mixed strips. In Section 6, we see that, in practice,
our heuristics do better than these worst-case bounds, with our best
method averaging about 1.21 vertices per triangle (allowing zero-
area triangles in sequential strips).

1

2

3
456

12

11

10
987

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: Lower-bound example for the Corollary.

4 Stripification Algorithm
Our stripification algorithm consists of five steps:

(1) computing a triangulation of faces of the model that are not
already triangles;

(2) constructing a spanning tree, , in the dual graph of the tri-
angulation;

(3) partitioning into a set of paths, corresponding to Hamiltonian
triangulations;

(4) greedily decomposing the corresponding Hamiltonian strips
into sequential or fan tristrips; and

(5) concatenating short tristrips into longer tristrips, using a set of
postprocessing heuristics applied to the result of Step (4); see
Section 5.

For (1), we have integrated and enhanced the FIST [10] sys-
tem, which robustly triangulates polygonal models, even if highly
degenerate or corrupted. Our modification of FIST enables us to
output triangulations of convex faces that are pure tri-strips, or to
leave convex faces untriangulated (and triangulate only all concave
faces).
For Step (2), we have implemented standard depth-first search

(DFS) and breadth-first search (BFS), and we have also devised a
hybrid variant that does DFS, but returns to the highest level node
not yet fully explored.
For (3), we apply our “bottom up” Path Peeling Algorithm, from

Lemma 4 of the last section. This guarantees that each path (Hamil-
tonian strip), except possibly for one, will have at least three tri-
angles. We also devised an optimal algorithm, based on dynamic
programming, to partition into a minimum number of sequential
tristrips; see Section 5.
The overall goal in Step (2) is to build a spanning tree of

that has a small number of nodes of degree two, as this will result
in a small number of paths generated in Step (3) of the algorithm.
BFS tends to generate trees that resemble balanced binary trees.
Therefore, the number of nodes in a BFS-tree that have two chil-
dren may be large. DFS and the hybrid search both tend to gener-
ate more degree-one nodes than BFS, thus reducing the number of
paths generated in Step (3).

s

BFS

s

DFS

s

Hybrid

Figure 4: Three graph searching algorithms.

There is a choice of which triangle to visit next during the con-
struction of whenever the graph search has entered a triangle with
two unvisited neighbors. Obviously, one can simply perform ran-
dom marching and pick the next triangle randomly. One heuristic
for picking a “good” next triangle has been implemented by SGI in
tomesh: this heuristic picks the triangle with the least number of
unvisited neighbors. Using this heuristic in Fig. 4(b) will find one
single path that covers . Another heuristic is to keep track of the
side on which the current triangle has been entered from the previ-
ous triangle, and to choose the next triangle such that one alternates
the turn. This alternate-turn marching can be expected to help to
get longer and therefore fewer sequential strips.
We implement and test all three graph search algorithms, BFS,

DFS, and hybrid search. For each search algorithm, we generate
the following three types of strips:
(1) sequential strips only,
(2) fan strips only,
(3) both sequential and fan strips.

If both sequential and fan strips are generated, we favor sequential
strips. That is, a fan strip will start only if the greedy decomposi-
tion in Step (4) encounters four consecutive triangles that cannot be
encoded with a sequential strip.
Our algorithm runs in overall linear time in the worst case, after

triangulation (Step (1)). In practice, FIST has been shown to take
only linear time for Step (1), see [10], especially since most faces

BFS DFS Hybrid

G. Zachmann 17 Striping Advanced Computer Graphics 26 June 2013 SS

§  Additional heuristics (since we need the spanning tree for special
purposes):

§ Observation: during DFS through the graph, we have very often a free
choice which neighboring node shall be visited next

Ø Heuristic here: choose the
neighboring triangle (= neighboring
node in spanning tree T) such
that the current triangle and
this neighboring triangle would
not produce a swap vertex, if they
were in a common triangle strip

start

current

G. Zachmann 18 Striping Advanced Computer Graphics 26 June 2013 SS

§  Regarding step 3 (post-processing = concatenation of short strips):

§  The setup of strips (on the graphics card) costs more time than to send a
vertex

§  Consequence: concatenate several short strips, even if that requires to
insert a swap-vertex

§  Cases:

tend to be triangles, quadrilaterals, or low-cardinality polygons. (In
theory, triangulation can be done in worst-case linear time for faces
without holes, and in in general.)

5 Improved Stripification Algorithm
Taking Care of Orientations

In computing tristrips, we take care to respect the orientation of the
leading triangle in each tristrip, as this gives the renderer crucial
information about the sign (orientation) of the normal vector. Fol-
lowing the convention that normal vectors point to the outside of
the object, this means that the vertices of the first triangle have to
appear in counter-clockwise (CCW) orientation when viewed from
the outside.
Taking care of the orientation of the first triangle is no problem

for a tristrip of odd length, as we can simply specify its vertices in
reverse order. However, it creates a problem for tristrips of even
length, if their original vertex order is inappropriate. For instance,
the first triangle of the tristrip in Fig. 2(a) is oriented CW, but spec-
ifying the vertices in reverse order, (5,4,3,2,1), changes the orienta-
tion of the first triangle to CCW. However, a reversal of the vertex
order does not cure the problem for the tristrip in Fig. 2(b). One
may either break it up or add “swap” vertices to make it a strip of
odd length, depending on whether or not swaps are permitted.

Dynamic Programming Optimization
The goal of our Dynamic Programming (DP) algorithm is to mini-
mize the number of sequential strips needed to cover a given span-
ning tree . We engineered our algorithm to ensure correct orien-
tations of the tristrips, provided that the input model has consistent
orientations for all the triangular faces.
For each node , we define the objective function

to be the minimum number of sequential strips that can be derived
from the subtree rooted at , in “mode ”, where “mode ” has the
following meanings, for :

0: no sequential strip enters ;
1: a strip enters with a left turn and an even parity;
2: a strip enters with a right turn and an even parity;
3: a strip enters with a left turn and an odd parity;
4: a strip enters with a right turn and an odd parity.

Here, we say a triangle is entered with a left turn by strip if its
vertex encoding in complies with its orientation. Otherwise, we
say it is entered with a right turn. We also say that a triangle is
entered by strip with an even parity if it is an even-numbered
triangle within ; otherwise, it is entered with an odd parity. Note
that does not include in its count the strip (if any) that enters
node .
Assume that has two children, “left” and “right”, which are

denoted by and . Then we can establish the following recursive
relations. (We note that this also works for models that do not have
consistent orientations.) For :

or or

is computed by optimizing over all possible cases:
1. the node consists of a singleton strip;
2. a strip starts from and enters its left child with a left (resp.,

right) turn and an even parity;
3. a strip starts from and enters its right child with a left (resp.,

right) turn and an even parity;
4. a strip passes through , and enters its left child with either a

left or right turn and its right child with either a left or right turn,
both with an odd parity.
Similarly, we can establish the following recursive relations. For
and :

or or
or

For and :

or or
or

If , i.e., if the optimal value is
achieved when the strip stops at with an even parity and with
a left turn, then its orientation could not be corrected. Thus, in this
case we set to .
For a leaf node , the boundary conditions are ,

, .
The optimal value is given by , where is the root of
. To actually build sequential strips, one has to store information

about the optimum decomposition at every node.
The computation can be done in linear time, by traversing the

tree in a bottom-up fashion. There are only a constant number of
cases per node and each node is visited exactly once.

Theorem 7 In time, one can compute an optimal decompo-
sition of a tree into a minimum number of pure sequential tristrips.

Strip Concatenation
In this section, we discuss how to concatenate tristrips in Step (5)
of the Stripification Algorithm in order to reduce both the number
of vertices rendered and the number of tristrips. We start with ex-
plaining how to concatenate sequential tristrips if both zero-area
and duplicate triangles are allowed. (The simple modifications for
using only zero-area triangles are omitted here.)
Let and

be two sequential tristrips in
the triangulation . Assume that either the first or last triangle of
is a neighbor of the first or last triangle of . We will explain strip
concatenation for the case that and
are neighbors.
The result of strip concatenation should be that three consecutive

vertices in the new strip specify either a triangle in or a newly
introduced degenerate triangle. We use “ ” to denote the binary
operation that combines two sequential strips. We have to consider
three cases.

1

2

3

4

5

4

5

6

7

8

Figure 5: Concatenation that reduces the encoding cost by two.

If and then
.

This first case corresponds to only one configuration, as illustrated
in Fig. 5. We have

1

2

3

4

5 5

6

8

4

7

1

2

3

4

5

78

4

5

6 1

2

3

4

5
5

6

8

7

3

Figure 6: Concatenation that reduces the encoding cost by one.

If or or , and then
.

This second case breaks down into three configurations, as illus-
trated in Fig. 6. The concatenations corresponding to the three con-
figurations are

Else
.

It can be easily checked that this third case corresponds to four
other configurations, in which two strips can only be linked without
achieving a reduction in the number of vertices.
The concatenation of two fan strips is simple. Similar to the

discussion above, let and
be two fan strips. Without loss of

generality, we assume that the triangles and
are neighbors. Then and may be linked if

and only if and , and

Tristrips of length one (i.e., single triangles) are special. The
vertex sequence in the strip can be permuted in
cyclic order. This introduces variations in the basic algorithms for
strip concatenation.
Our concatenation algorithm achieves only the optimal concate-

nation for one pair of neighboring strips and . However, a strip
of length one has three neighboring strips which may be candidates
for concatenation, and a strip of length greater than one has two
terminal triangles, i.e., two candidates for concatenation. Thus, the
order of concatenation may matter. For a better global optimization,
three concatenation stages are performed, each of which constructs
concatenations that reduce the number of vertices by or ver-
tices per concatenation. A direct addressing table can be used to
store, for each triangle, the index of its incidental strip . One pass
through the table checks each triangle that has a valid strip index.
Each such triangle’s neighboring triangles are looked up in the ta-
ble to find their incidental strips, which are neighbors of . One
such strip is chosen to be linked to to reduce the most number
of vertices. The global optimization as mentioned above may be
achieved by multiple passes through the table. A hash table may be
used to replace the direct addressing table to save memory and com-
puting time, though our implementation chooses the latter to ease
the coding complication and yet the memory consumption and the
increase in running time is negligible compared to the other parts
of the program.
In theory, two tristrips can potentially be concatenated in Step (5)

by using either a zero-area triangle or a duplicate triangle. In prac-
tice, rendering triangles repeatedly may cause visual artifacts, de-
pending on how the graphics hardware treats duplicates. With our
stripification code the user can specify whether to allow no “swap”
vertices, zero-area triangles, or zero-area triangles and duplicate tri-
angles.

6 Results
We have conducted experiments on various platforms; here we
report only on one representative platform: a Sun Ultra 30 with
512MB memory, running Solaris 2.6. The CPU-time consumption
of our code, and of the other codes, was obtained by using the C
system function “getrusage()”. We report both the system and the
user time. Of course, any file I/O and similar pre- or postprocessing
is not included in the timings reported. All CPU times are given in
milliseconds. All codes were compiled with GNU’s gcc, using the
optimization level “-O2”.
We compared FTSG against the leading publicly available sys-

tem, STRIPE 2.0. (STRIPE 2.0 has been released recently;
it is orders of magnitude faster than the published [8] version,
STRIPE 1.0.) All subsequent results have been obtained us-
ing STRIPE 2.0. For comparison purposes we also tested SGI’s
tomesh.
Making STRIPE report the same type of statistics data as FTSG

and tomesh turned out to be a cumbersome task. STRIPE has
most I/O operations tightly interwoven with its algorithm, and its
accounting is not entirely reliable. We modified STRIPE in order
to exclude file I/O from timing. Also, we decided to parse the output
generated by STRIPE in order to obtain the statistics data reported
here. (Of course, the reliability of STRIPE was tested by running
the original code.)
Our datasets included many standard models available on the

web, with sizes ranging from 32 vertices to 543,652 vertices
(1,087,716 triangles). We tested a variety of 107 models, includ-
ing models of buildings and crafts (designed on CAD systems), and
models of animals and fictional characters that were typically de-
rived from scanned data. We also included a few highly regular
polyhedral models of machining tools. Typically, those models re-
quired only one or a very small number of sequential strips.
We first tried to determine experimentally which combinations of

heuristics yielded the best results. Parameters in our tests included

searching the dual graph by means of depth-first (-dfs),
breadth-first (-bfs), or hybrid search (-hyb);

using random marching (-rnd) or alternate-turn marching (-
alt) during the graph search;

enabling the use of zero-area triangles (-zero) or duplicate tri-
angles (-dup) during the strip concatenation.

generating sequential strips (-seq), fan strips (-fan), or both
sequential and fan strips (-seq -fan).

In all our tests FTSG was required to generate tristrips that are con-
sistent with the orientation of the faces of a model (if such a consis-
tent orientation existed).
The results of our tests are summarized in Table 1, which lists,

averaged over all our models, the average numbers of vertices per
triangle and the average CPU time (in milliseconds) per triangle.
The different heuristics are arranged in sorted order according to
their performance.
Using the alternate-turn heuristic for depth-first search and

allowing zero-area triangles for concatenating purely sequential
tristrips yielded the best results, with an average of 1.23 vertices per
triangle. (The use of duplicate triangles further decreases this num-
ber by about 1%, but duplicate triangles have been ruled out since
they might cause visual artifacts on some graphics hardwares.) In
general, depth-first search with the alternate-turn heuristic yielded
slightly better results than the hybrid search, and both performed by
far better than breadth-first search.
It is interesting to see that using fan strips in conjunction with

sequential strips does not help to decrease the vertex count. This
observation is also confirmed by Fig. 7. It shows the percentage

Good case

And 2 more cases … (reduction by 1 vertex)

G. Zachmann 19 Striping Advanced Computer Graphics 26 June 2013 SS

§  Result: on average, ca. 1.23 vertices per triangle are sent during
rendering

§  Data structure: DCEL is a suitable candidate

§  Observation: The performance depends very heavily on the DS!

§ With pre-implemented, generic DS (e.g., from a library) one is finished
with the job quickly, but the performance is mediocre

§ With specially adapted, "hand-made" DS, the performance
(hopefully!) is very good, but the implementation takes much longer

G. Zachmann 20 Striping Advanced Computer Graphics 26 June 2013 SS

§  A special data structure for stripification:

§  Utilize the fact that we only work with triangle meshes

§  Store all three incident edges directly with the triangles

-  This minimizes "pointer chasing", makes better use of CPU cache

§  This is a mix of face-based and edge-based data structures

class Triangle
{
 HalfEdge halfEdges[3]; // faster access
 uint degree; // 0, ..., 3
 Triangle *nextInList, // for d-list
 *prevInList;
 Triangle *child[2]; // for spanning tree
}

G. Zachmann 21 Striping Advanced Computer Graphics 26 June 2013 SS

Examples

G. Zachmann 22 Striping Advanced Computer Graphics 26 June 2013 SS

G. Zachmann 23 Striping Advanced Computer Graphics 26 June 2013 SS

G. Zachmann 24 Striping Advanced Computer Graphics 26 June 2013 SS

Caveats

§  Today's graphics cards are so complex and possess so many
further features, that it is not clear, whether / how much striping
gains us rendering performance!

§  Some GPUs have an integrated index cache (helpful when rendering
indexed face sets), so that the pipeline first checks whether a new
vertex index is in the cache; if so, then the transformed vertex is
retrieved directly from the cache

§  In the case where expensive vertex shaders are used, striping
surely gains performance

§  On mobile graphics chips, striping gains performance for
"normal" rendering (as of 2012)

§  Because they have no caches, and much less features

§  But the opinions are mixed …

G. Zachmann 25 Striping Advanced Computer Graphics 26 June 2013 SS

